Peer to Peer Collaborative Editing on XML-like trees

Martin Stéphane and Denis Lugiez
Laboratoire d’Informatique Fondamentale
39 rue F. Jolio-Curie
13013 Marseille, France .
{stephane.martin, denis.lugiez}@lif.univ-mrs.fr

ABSTRACT

Peer to peer collaborative editing allows distinct sites to
work concurrently on a common document without the need
of a centralization process, contrary to classical systems like
CVS or SVN that rely on this centralization to detect con-
flicts. In this so-called optimistic approach, we investigate
how one can perform collaborative edition on a XML doc-
ument like data-structure which is used in the Harmony
framework [1]. It is well-known that convergence of the pro-
cess (i.e. all participants agree on a final result) is ensured
when two properties T'P1 and T P2 are satisfied. In the word
case (i.e. documents that are strings) no existing algorithm
satisfy both properties [2] and we show that for the tree case,
a first natural set of operations can’t satisfy T'P1 but that a
very close set of operations satisfies TP1 and T P2. There-
fore our proposed set of operations can be implementable in
different algorithms like ADOPTED,....

Keywords
Peer to peer, Collaborative Editing, Optimistic reconcilia-
tion, XML-documents

1. INTRODUCTION

Cooperative editing of documents or synchronization sys-
tems like shared calendar become more and more common.
The best known cooperative systems are CVS or Subversion
(SVN) which both use locks : When a participant edits a
file nobody else can modify this file at the same time. This
requires a central server and it isn’t failure resilient. Fur-
thermore, this contradicts a Peer to Peer (P2P in short)
approach where the set of participants is not fixed in ad-
vance. In this paper, we study collaborative editing in a
P2P framework using an optimistic approach. In this frame-
work, each participant works concurrently on the document
and informs the other participants of each operation that
he has performed. The communication is asynchronous and
conflicts may arise because concurrent operations performed
by different participants transform the documents in differ-
ent ways that may be incompatible. In the optimistic ap-
proach, conflicts are solved by a transformational approach
that replaces an operation on one site by another operation
that combines the operation that this site has performed and
the operation which has been done by another site. When
the transformation satisfies two confluence properties called
TP1 and T P2, the convergence of the process is ensured:
all participants will eventually agree on the same final doc-
ument (proved in [7, 4]).

Like many questions involving concurrent process working
on a shared resource, the apparent simplicity of the prob-
lem is delusive. For instance, when the document is modeled
by a string and the operations are simply add or delete a
letter at some position, the algorithms devised and used so
far in all current systems don’t have both properties T P1
and TP2 [3] and more complex operations must be consid-
ered to ensure a weak notion of convergence [2]. In this
paper, we study a more elaborated data-structure which is
the unranked unordered notion of edge-labeled trees used
in Harmony project [1]. In this data structure, contrary
to XML documents, the same label can’t occur more than
once between siblings. This is a first step towards a com-
plete treatment of XML documents which are the standard
representations for data exchange and manipulation on the
Web.

Unpublished work [5] propose an approach to deal with XML
documents but they use the So6 Framework based on the
SOCT4 [8] algorithm which use time-stamp delivered by cen-
tral server.

We study two similar sets of operations for adding and delet-
ing nodes in this structure differing only by the deletion of
nodes. In the first set, a single node is deleted, but some re-
organization of the tree may follow to keep the single label
property. In the second set, deletion means that the entire
subtree located at this node is deleted. We prove that the
first set of operations can’t satisfy the T'P1 property what-
ever transformation is used, and that the second set satisfies
both TP1 and T'P2. Therefore, this set is a good candidate
for P2P editing specially with ADOPTEDI6] algorithm

2. FORMAL DEFINITIONS

Documents (or trees) are modeled by unranked, unordered,
trees where two different siblings have different labels. Two
other classical models are ordered unranked trees (i.e. XML
documents) or unranked unordered trees allowing multiple
occurrences of the same label for siblings. The first data
structure contains the string case, therefore presents the
same difficulties as this case: no existing algorithm fulfills
the TP1 and T P2 properties. The second data structure
forbids the canonical definition of paths required to access
the nodes of the trees that are modified during the edition
process.

2.1 Tree Definition

Let X be a set of labels (names). Documents or trees are
defined according to the grammar :

T:= {}
| {nl(T1)7~"7nm(Tm)}7
N1y ey N € 25, Th, o, T €T,
Vi, j € [1..m]i # j = n; # n;.

// Empty tree
// Set of tree n;(T;)

As already mentioned, the definition ensures that two edges
issued from the same node have different label: i.e. a given
label occurs at most once on siblings. Trees are unordered
ie. {n1 (T1)7 ey Nim (Tm)} = {na(l)(T(,(l)), ceey na(m> (Tg(m))}
for any permutation o.

Example :
t =
Pat Henri
Phone Address
Cellular 45 EmileCaplantStreet
0691543545 0491543545
t=

Pat Phone <{ Home({0491543545({})})

Cellular({0691543545({})}) }) })
Henri({Address({45 Emile Caplant Street({})})})

Union of Trees
We define @ as follows : TH T — T

{}ot=t
te{}l=t

{nl(Tl), ,TLZ(TZ),
b
inﬁ(T{), i (T, ...,n]-(T;), (T}

{’I’Ll(Tl), ,’I’Lz(Tl D Tllc)7 ...,nj(Tj D T'g)7
;1 (T1), o (T5)}

7”]'(Tj)7 "'7nm(Tm)}

2.2 Projection and Paths
We define ¢),, the projection along n on t.
{77,1 (Tl), ceey ’I’LZ'(T'i)7 ceey nm(Tm)}‘ni
O

Il
e

For exemple ¢, . =
{Address({45 Emile Caplant Street({})})}.

A path is a sequence of names. We write € for the empty
path and p.p’ for the concatenation of paths p and p’. The
set of paths is written P . The projection of tree t along a
path p, written ¢, is defined as follows:

]t =t
t‘p o t|n.p = t‘n‘p?” e Eap e P
Domain
The function Dom : T +—— P(X) is defined by:

Dom({}) 0
Dom({nl(Tl)7-~~>nm(Tm)}) {n1,...,nm}

Example :

Dom(t)

tpar \Ph,one)

{Pat, Henri}

Dom(= {Home, Cellular}

We write p1 <4p2, when a path p; is a prefix of another path
p2. It defines a partial order on paths.

2.3 Operations on Trees

Operations are functions T' —— T that modify trees and
the set of operations is denoted by Op. Editing a document
consists in performing a sequence of operations on a tree.

The following operations are used in this paper:
e Add(p,n) : Add a edge labeled n at end of path p.

Add(n’ .p,n)({n1(t1), ...,nq(tg)}) =
[n1(t1), - (L), (Add(p, m)({})}, if ' & Dom(t)

Add(ni.p,n)({ni(t1), ..., ni(ts), ..., ng(tq)}) =
{nl(tl)’ () ni(Add(p7 n)(tl))7 ceey nq(tlZ)}

Add(e,n)(t) =
t, if n € Dom(t)

Add(e,n)({n1(t1), .-, nq(tq)}) =
{na(t1), s nq(te), n({})}

Example : t' = Add(Henri.Phone, 0491835469) (¢)

Pat

Phone

Cellular Home |491...

45EmileCaplantStreet

0691543545 0491543545

And Add(Henri, Phone)(t') does mnothing because
Henri.Phone already exist.
e Nop() : Do nothing.
Nop()(t) =t

Figure 1: Common operations

Operations to delete nodes are defined later on.

2.4 The Do Function

The function Do : T' x Op — T applies an operation op €
Op, on a tree t: Do(t,op) = op(t)

The following notation is used for a sequence of operations
(t)[op1; 0p2; .. ; 0pn] = Do(0pn, ..., Do(op2, Do(op1, t))...)

2.5 TheIT Function for Collaborative Editing

Collaborative edition involves several participants (sites) that
independently performs operations on a common document.
In the P2P model, there is no centralization process that

enforces convergence (i.e. all participants agree on the same
resulting document). The only communication involved is
that each site informs the other sites of the operations that
it performs. Therefore two sites 1 and 2 may intend to re-
alize respectively op: and op2, and inform the other site of
the operation that has been done. The IT function is the
transformation that a site computes to integrate an opera-
tion performed by another site with the last operation that
he has done. More precisely IT (op2,0p1) is the operation
that replaces op2 on site; when ops was integrated previ-
ously by sites for competing operations op; and op2. If no
integration occurs, conflicts may happen: let us assume that
site; deletes a node at some position when sites creates a
node at the same position. If the initial tree doesn’t con-
tain a node at this position, the first site actually adds the
note, then receives the notification that the second node has
deleted this node, therefore the node is suppressed. Mean-
while, the initial deletion operation on sites does nothing,
then it gets notification of the addition done by site; which
results in the addition of the node: the trees on each site
are in contradictory states. To avoid the conflict, opera-
tions must be integrated using I7', for instance one possible
IT operation replaces the Add operation on sitez by Nop()
which suppresses the conflict.

¢
op1 op2
t ts
IT (op2, 0p1) = ops opy = IT(op1, 0p2)
th th

The classical property TPl required on the I7T function
states that t] = t5.

Remark: To design IT functions that ensures convergence
is a difficult problem and often results in counter-intuitive
definitions and results.

2.6 The 7r1 and 7P2 Properties
Convergence of collaborative editing is ensured [7, 4] when
the IT function satisfies

set of its successors.
Del(n'.p,n)(t) =t, if n & Dom(t)

Del(n;.p,n)({n1(t1), ...,ni(t:), ..., ng(tq)}) =
{n1(t1), ..., ns(Del(p,n)(t:)), ..., nq(tq) }

Del(e,n)(t) =t, if n € Dom(t)

Del(E, ni)({nl(tl), ceey ni(ti), ceey nq(tq)}) =
{ni(t1), ... nq(te)} @ s

Let t =
n m Del(e,n)is Which is :
m u m m m
S
r r U r u

3.2 No IT Compatible with 71 Exists
The following theorem states an negative result for the set
Op.

THEOREM 1. There is no definition of IT (op1,0p2) € Op
such that IT satisfies T P1.

PrOOF. The function IT satisfies property T P1 iff

(t)[op1; IT (op2, op1)] = (t)[op2; 1T (op1, op2)]
i.e. t; = t5 in the next picture

t
op1 op2
t ta
IT(op2,0p1) = oph opy = IT(op1, 0p2)
ot

We prove that there is no such transformation I7T (on the

e T'P1property: (t)[op1; [T (op2,0p1)] = (t)[op2; IT(op1,0p2)] set of operation Op). The proof is a case analysis on the

(i.e. t] =ty in previous figure)

e T P2 property: IT(IT (op,op1),IT(op2,0p1)) =
IT(IT(op, op2), IT(op1, 0p2))

In this paper we show that different choices of operations to
delete node may or may not ensure that 7'P1 holds.

3. FIRST MODEL : DELETING A SINGLE
NODE

3.1 Operations on Trees

The first set of operations on trees that we use is:

Op = {Nop(), Add(p,n), Del(p,n)} p € P,n € ¥ with Nop()
and Add(p,n) are as before (see figure 1).

Del(p,n): Replace a edge labeled n at end of path p by the

possible definition of IT'.

Let n,m,r € 3 pairwise different element.

Let t =
n m

m

We choose op1 as Del(e,n) and ops as Del(n, q)

We want to perform Del(e,n) concurrently with Del(n,m)
TP1: (t)[Del(e,n); IT(Del(n,m), Del(e,n))] =

(t)[Del(n, m); IT(Del(e,n), Del(n,m))]

We do the first operation of this sequence.

The first site execute Del(e,n) and we have

t1 = Del(e,n)(

The second site execute Del(n, m) and we obtain :

to = Del(n, m)(

Let as assume that function IT exists in this model. To
have the property TP1,0p; and op, must have operation of
Op and (t)[op1;0ps] = (t)[op2;0pl]. We assume that T P1
hold and we prove that 17T (op1,0p2) can’t be defined on an
operation of Op.

* op = Nop()

— opy = Nop() : Trivial because t; # t2

— opy = Add(_,.)
There is at least one more edge on t5.

— opy = Del(z,y) we get :

n
(z=ny=r)ogp(z =€,y =n)or(zr =€,y =m)

Any possible operation doesn’t change t2. In all
case ty # th

e opy = Add(_,.)

— opt = Nop()
We have r under m on ¢; under n on th.
- Opll = Add(*7 7)

Number of edge on t; and on t, are different.

— op} = Del(_,_) idem

e opy = Del(_,.)

t) = mI or r I or we return on Nop() case.

— opy = Nop() : The number of node are different.
Therefore t; # th

— opy = Add(_,_) idem
— opy = Del(_,_) idem

4. SECOND MODEL : DELETING A SUB-
TREE
4.1 A New Delete Operation

In this model, we replace the Del operation by a deletion
operation that removes the entire subtree located at some
position (hence no fusion is needed after deletion).
Del(p,n) :Delete a node labeled n at end of path p and delete
his subtree.

Del(n'.p,n)(t) =t, if n & Dom(t)

Del(ni.p,n)({ni(t1), .y ni(ts), -
{nl(tl) ’nl(Del(p7n)())7 7nlI(‘I)}

Del(e,n)(t) =t, if n € Dom(t)

Del(e, m)({nl(tl), cery ni(ti), veey nq(tq)}) =
{na(t1), ..., nq(tq)}

4.2 Function IT
We define the function IT as follows.
IT(op1,0p2) =

IT(Add(p,n), Add(p',n')) = Add(p,n),
Nop(),ifp=p ' An=n’

IT(Add(p,n), Del(p/,n')) = { Nop(), if p'.n’ <p

Add(p,n), else.
IT(Del(p, n), Add(p', n')) = Del(p, n)
Nop(),if p=p' An=n’

IT(Del(p,n), Del(p',n")) = ¢ Nop(), if p'.n" ap
Del(p,n), else.
IT(op1, Nop()) = op1

IT(Nop(),op2) = Nop();

4.3 The Main Result

The new set of operations ensures that collaborative editing
is possible.

THEOREM 2. IT satisfies TP1 and T P2.

The proof proceeds as a case analysis (see appendix A.1 and
A.2).

S. PERSPECTIVES

We aim at investigating several research directions. The first
one is to add a typing information on documents like DTD
for XML documents. Logics for typing documents that are
unranked unordered trees have been investigated in [9] and
can be used in this framework. Another research direction is
to enrich the model of trees by adding strings at the leaves
of the documents: for instance a TeX paper has a tree-like
structure (section, subsections,...) where the actual text is
a string that occurs at leaves positions. This model can be
used both with ordered or unordered trees which are both
meaningful depending on the applications.

6. REFERENCES

[1] J. Nathan Foster, Michael B. Greenwald, Christian
Kirkegaard, Benjamin C. Pierce, and Alan Schmitt.
Exploiting schemas in data synchronization. Journal of
Computer and System Sciences, 2007. To appear.

Extended abstract in Database Programming Languages
(DBPL) 2005.

[2] Abdessamad Imine. Conception Formelle d’Algorithmes

de Réplication Optimiste. Vers I’Edition Collaborative

dans les Réseaux Pair-a-Pair. PhD thesis, Université

Henri Poincaré, Nancy, décembre 2006.

Abdessamad Imine, Michaél Rusinowitch, Michaél

Rusinowitch, Gérald Oster, Gérald Oster, and Pascal

Molli. Formal design and verification of operational

transformation algorithms for copies convergence.

Theor. Comput. Sci., 351(2):167-183, 2006.

[4] Brad Lushman and Gordon V. Cormack. Proof of

correctness of ressel’s adopted algorithm. Inf. Process.

Lett., 86(6):303-310, 2003.

Gérald Oster, Hala Skaf-Molli andPalcal Molli, and

Hala Naja-Jazzar. Supporting collaborative writing of

xml documents. unpublished, 2007.

Matthias Ressel, Doris Nitsche-Ruhland, and Rul

Gunzenhéuser. An integrating, transformation-oriented

approach to concurrency control and undo in group

editors. In CSCW ’°96: Proceedings of the 1996 ACM
conference on Computer supported cooperative work,
pages 288297, New York, NY, USA, 1996. ACM.

Maher Suleiman, Michele Cart, and Jean Ferrié.

Concurrent operations in a distributed and mobile

collaborative environment. In ICDE ’98: Proceedings of

the Fourteenth International Conference on Data

Engineering, pages 36—45, Washington, DC, USA, 1998.

IEEE Computer Society.

Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher

Suleiman. Copies convergence in a distributed real-time

collaborative environment. In CSCW ’00: Proceedings

of the 2000 ACM conference on Computer supported
cooperative work, pages 171-180, New York, NY, USA,

2000. ACM.

[9] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic
you can count on. In Proceedings of Symposium on
Principles of Programming Languages (POPL). ACM
Press, 2004.

3

[5

[6

7

8

APPENDIX
A. PROOF

A.1 Proving TP1

Yopi,o0p2 € Op, s € State,

(t)[op1; IT (0p2, op1)] = (t)[op2; IT (op1, op2)]
We enumerate a different case :

1. op1 = Add(p,n) and op> = Add(p',n’)
(t)[Add(p,n); IT(Add(p', n'), Add(p,n))] =
(t)[Add(p, n); Add(p’, n')]

(t)[Add(p’,n’); IT(Add(p, n), Add(p',n"))] =
(t)[Add(p’,n"); Add(p, n)] We will prove :
Do(Do(t, Add(p,n)), Add(p’, ")) =
Do(Do(t, Add(p',n")), Add(p,n)).
We will explore every cases.
(a) Empty path :

e Ifn,n' & Dom(t) and n # n’

Add(e,n")(Add(e, n)({n1(T1), ..., nq(Ty)}))

= {m(Th), ..., ng(To), n({}), n'({})}
Add(e,n")(Add(e,) ({n1(T1), ..., nq (T)}))

(b)

()
(f)

= {n1(Th), ..., ng(Ty), 7' ({}), n({}}
Theses are equal.
o If n=n'
We obtain : = {ni(T1),...,nqe(Tq),n({})}
Because we use the third choice of function
Add(e,n)(t) and first operation add n({}).
e If n € Dom(t)
We have {ni(T1),...,nq(Ty),n’ ({})} Third we
use the second choice
e idem if n’ € Dom(t) with n.
e If n,n’ € Dom(t) the tree is unchanged.
if pnap’ : I, pnp’ = pif n € dom(p) then
Add(p,n) do nothing.
else We have t|, = {ni(T1),...,m1(T7),..nq(Ty)}

O = g (1), . ma (1), g (Ty) (1))
{nl(T1)7) ml(T1)7 “'nq(TQ)> n(Add(p P)({})}
By definition :
Add(p',n)(t) = {ni(Th), ..., m1(TY), ...,
ng(Ty,n(Add(p”,n")({})} therefor n € dom(t),) and
Add(p,n) do nothing.
50 @ = {ni(T1), ...y ma (T0), ...ng(Ty), n(Add(p”, n") ({})}
idem for p’.n’ <ap
if pap’ We have : p’ = p.m1.p:
We have t|p = {n1(T1), ...,’ITL1(711/)7 ey nq_l(Tq_l)}
it’s given in two cases, by recurrence definition :
1, =
{n(T1), ... ma(Add(ph, n')(T1)), -, ng—1(Tg—1), n({})}
idem for p’ < p
p, p’ not empty (general case) Ip € P|p = peomon-Pi
and p’ = Peomon.pp We have two path not empty
then :

o /7 ;o 1"
p1 = mi.p1 and py = ma.p;
We have
t, = {na (1), ... ma(T1), ..., ma(T3), ..ng—2(Ty—2)}
We have by definition :
t', = {ni(Th), ..., mi(Add(py,n)(T7), ...
; M2, (Add(pgv n/)(TQ))v seey nQ*Q(TQ*Q)}

2. op1 = Add(p,n) and ops = Del(p',n’)

(t)[Add(p,n); IT(Del(p',n'), Add(p,n))]")
(t)[Del(p',n’); IT(Add(p,n), Del(p’,n’))]*

p=p and n =n'
' = (t)[Add(p, n), Del(p,n)]
@) = ()[Del(p, n; Nop()]
— if n € Dom(p) then Add(p,n)(t) do nothing.
Therefore (Y =2
— if n € Dom(p) then Add(p,n)(t) create a node
who delete by Del(n,p) in V. and Del(n, p)
do nothing in @
Therefore (Y =2
p'.n'<p
' = (1)[Add(p, n); Del(p',n")]
@ = (t)[Del(p',n'); Nop()]
if p=p’.n’.p”
We take : t‘p, = {77,1(7—‘1)7 ...,’I’L/(T), ...,’I’Lq_l(Tq_1)}
We have :
(1)|p = {ni(Th),...,n" (Add(p",n)(T)), ..., ng—2(Ty—2)}
={n(T1), ..., ng—2(Ty-2)}
@), = (), ng—2(Ty—2)}

e else : same demo of 1f.

3. idem for op1 = Del(p,n) and ops = Add(p’,n’)) ?1;% .
1 = p—
4. op1 = Del(p,n) and opz = Del(p’,n') o IT(Add(p,n), Del(pa,n2)) = Nop()
(t)[Del(p,n); IT(Del(p',n'), Del(p,n))]™ = Nop()

(B)[Del(p',n'); IT(Del(p, n), Del(p,n'))]? * idem for pr.m1 <p

* else :
e pn=p’.n’: ™ = n), Del(p2,n2)) = n
1) — (t)[Del(p,n), Nop()] bec;lséT(Add(p:), Del(p2,n2)) Add(p,n)
@ = (t)[Del(p,n), Nop()]

p2.n2 Ap Apr.ni Ap
@) = IT(IT(Add(p, n), Del(p2,n2)), Nop())) =1
— idem if p1.n1 < p2
— Else :
™ = IT(IT(Add(p,n), Del(p1,n1)), Del(p2,n2)))
@ = [T(IT(Add(p,n), Del(pa,n2)), Del(p1,n1)))

e pnap

We have p’=p.n.p”;

We take t|, = {n1(T1),...,n(T), ..., ng—1(Ty-1)}

W) = ()[Del(p,n); Nop()]

@ = (1)[Del(p',n'); Del(p,n)]

W = {na(Th), s ng—1(Ty-1)}

first time : Del(p, n)(t)‘p{nl (T1), ..y
n(Del(p”,n')(T)), ..., ng—1(Ty-1)}

therefor (2)|p = {’I‘Ll (Tl), ...,’I’Lq_l(Tq_1)}

e idem for p'.n’ <p’

x ifp=p1An=n
) = IT(Nop(), Del(p2,n2))) = Nop()
@) = IT(IT(Add(p1,n1), Del(p2,n2)), Del(p1,n1)))
We deduct by hypotheses :
® = IT(Add(p1,m1), Del(p1,n1))) = Nop()

* idem if p=pa An =nao

% if pr.ny ap O = IT(Nop(), Del(p2, n2)))
® = IT(IT(Add(p,n), Del(pa,n2)), Del(p1,n1)))
We know p2 # pVna # n and pa.na2 Ap because
Pp2.n2<ApAP1.N1<Lp = p1.n1<dP2.n2 VP2.n2<dp1.n
@) = IT(Add(p,n), Del(p1,n1))) = Nop() =

e else: same 1f we have two independant subtree.

5. case Nop() is trivial. O

A.2 Proving TP2
IT(IT(Op,Op), IT(Op2, Op1)) M) =
IT(IT(Op, Opz), IT(Op1, Opz))®

We will explore every case : * idem if pa.ng <ap
* else :
e Op = Add(p,n), Op1 = Add(p1,n1) and Opa = Add(p2,n2) 1) = IT(Add(p,n))
therefore (V) = Add(p,n) and @) = Add(p,n) @ = IT(Add(p,n))

e Op = Add(p,n),Op1 = Add(p1,n1) and Opz = Del(p2,n2) e Trivial for Op = Del(p,n),Op1 = Add(pi,n1) and
IT(IT(Add(p,n), Add(p1,n1)), IT(Del(pa, n2), Add(p1,n1)))Y) Opz2 = Add(p2,n2)
IT(b)(IT(Add(p, n), Del(p2,n2), e if Op = Del(p,n),Op1 = Del(p1,n1) and Ops = Add(p2,n2)
170 (Add(py, m1), Del(pa, n2))) >) = I7(IT(Del(p,n), Del(pr, m)).
W = IT(Add(p,n), Del(p2,n2)) IT(Add(p2,n2), Del(p1,n1))
@ = 1T (IT(Add(p,n), Del(p2,n2)), Add(X,n1)) = U = IT(Del(p,n), Del(p1,n1)) because the first argu-
IT(Add(p,n), Del(pz2,n2)) ment will be a "Del’ and the second will be a ’Add’.

or @ = IT®(IT(Add(p, n), Del(p, n2)), Nop()) =
IT(Add(p7 n)7 Del(p27 77‘2))
Because (Y give a Add() or a Nop() the second argu-
ment of) is a Add or a Nop.

e Idem for Op = Add(p,n),Op1 = Del(p1,n1) and Op2 =
Add(pz, nz)

e Op = Add(p,n),Op1 = Del(pi,n1) and Opa = Del(p2,n2)

IT(IT(Add(p,n), Del(p1,m1)), IT(Del(p2,n2), Del(p1,m1)))
IT(IT(Add(p,n), Del(p2,n2)), IT(Del(py1,n1), Del(pz,n2)))

— If p1 = p2 and N1 = no
W = [T(IT(Add(p,n), Del(p1,n1)), Nop())
@ = IT(IT(Add(p,n), Del(p1,n1)), Nop())
— If p2.n2 A p1
= IT(IT(Add(]L n)a Del(p17 nl))> Del(p27 7L2)))
because p1.n1 # p2.n2
@ = IT(IT(Add(p,n), Del(pa,n2)), Nop())
* if po.na<p
) = IT(IT(Add(p,n), Del(p1,m1)), Del(p2,n2)))
®) = Nop()
- if pr.ni<ap
) = Nop()
) = Nop()

@ = IT(IT(Del(p,n), Add(ps,n2)),

IT(Del(p1,n1), Add(p2, n2))
@ = IT(Del(p,n), Dell(p1,n1))
idem for Op = Del(p,n),Op1 = Add(p1,n1) and Ops =
Del(p2,n2)
if Op = Del(p,n), Op1 = Del(p1,n1) and Opz = Del(pz2, n2)
Trivial If Op = Nop()
if Op = X (n,p), Op1 = Nop() and Opz = X'(nz2,p2)
W = IT(IT(X(p7 n)7 NOp())? IT(X,(pQ’ 712)7 Nop())
=]T(X(7”)7X/(p27n2))
@ = ITUT(X (p,n), X' (p2,n2)), IT(Nop(), X' (p2,n2))
=IT(X(p,n), X'(p2,n2))
idem Op = X(n,p), Op1 = X(p1,n1) and Op2 = Nop()
Trivial, if Op = X(n,p),Op1 = Nop() and Op2 =
Nop()

